Combinatorics of binomial primary decomposition
نویسندگان
چکیده
منابع مشابه
Combinatorics of Binomial Primary Decomposition
An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely those that are associated to faces of the semigroup. These results are intimately connected to hype...
متن کاملCellular Binomial Ideals. Primary Decomposition of Binomial Ideals
It is known that algorithms exist which compute primary decompositions of polynomial ideals (Gianni et al., 1988; Eisenbud et al., 1992; Becker and Weispfenning, 1993; and more recently Shimoyama and Yokoyama, 1996). However, in case the ideal is binomial, binomiality of its primary components is not assured, that is, the above algorithms do not necessarily compute a decomposition into binomial...
متن کاملCombinatorics of binomial decompositions of the simplest Hodge integrals
We reduce the calculation of the simplest Hodge integrals to some sums over decorated trees. Since Hodge integrals are already calculated, this gives a proof of a rather interesting combinatorial theorem and a new representation of Bernoulli numbers.
متن کاملGeneralizing the combinatorics of binomial coefficients via l-nomials
An l-sequence is defined by an = lan−1 − an−2, with initial conditions a0 = 0, a1 = 1. These l-sequences play a remarkable role in partition theory, allowing l-generalizations of the Lecture Hall Theorem [7, 8] and Euler’s Partition Theorem [8, 26]. These special properties are not shared with other sequences, such as the Fibonacci sequence, defined by second-order linear recurrences. The l-seq...
متن کاملGeneralizing the Combinatorics of Binomial Coefficients via !-nomials
An !-sequence is defined by an = !an−1 − an−2, with initial conditions a0 = 0, a1 = 1. These !-sequences play a remarkable role in partition theory, allowing !generalizations of the Lecture Hall Theorem and Euler’s Partition Theorem. These special properties are not shared with other sequences, such as the Fibonacci sequence, defined by second-order linear recurrences. The !-sequence gives rise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2009
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-009-0487-x