Combinatorics of binomial primary decomposition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorics of Binomial Primary Decomposition

An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely those that are associated to faces of the semigroup. These results are intimately connected to hype...

متن کامل

Cellular Binomial Ideals. Primary Decomposition of Binomial Ideals

It is known that algorithms exist which compute primary decompositions of polynomial ideals (Gianni et al., 1988; Eisenbud et al., 1992; Becker and Weispfenning, 1993; and more recently Shimoyama and Yokoyama, 1996). However, in case the ideal is binomial, binomiality of its primary components is not assured, that is, the above algorithms do not necessarily compute a decomposition into binomial...

متن کامل

Combinatorics of binomial decompositions of the simplest Hodge integrals

We reduce the calculation of the simplest Hodge integrals to some sums over decorated trees. Since Hodge integrals are already calculated, this gives a proof of a rather interesting combinatorial theorem and a new representation of Bernoulli numbers.

متن کامل

Generalizing the combinatorics of binomial coefficients via l-nomials

An l-sequence is defined by an = lan−1 − an−2, with initial conditions a0 = 0, a1 = 1. These l-sequences play a remarkable role in partition theory, allowing l-generalizations of the Lecture Hall Theorem [7, 8] and Euler’s Partition Theorem [8, 26]. These special properties are not shared with other sequences, such as the Fibonacci sequence, defined by second-order linear recurrences. The l-seq...

متن کامل

Generalizing the Combinatorics of Binomial Coefficients via !-nomials

An !-sequence is defined by an = !an−1 − an−2, with initial conditions a0 = 0, a1 = 1. These !-sequences play a remarkable role in partition theory, allowing !generalizations of the Lecture Hall Theorem and Euler’s Partition Theorem. These special properties are not shared with other sequences, such as the Fibonacci sequence, defined by second-order linear recurrences. The !-sequence gives rise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2009

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-009-0487-x